Distance functions and skeletal representations of rigid and non-rigid planar shapes
نویسندگان
چکیده
Shape skeletons are fundamental concepts for describing the shape of geometric objects, and have found a variety of applications in a number of areas where geometry plays an important role. Two types of skeletons commonly used in geometric computations are the straight skeleton of a (linear) polygon, and the medial axis of a bounded set of points in the k-dimensional Euclidean space. However, exact computation of these skeletons of even fairly simple planar shapes remains an open problem. In this paper we propose a novel approach to construct exact or approximate (continuous) distance functions and the associated skeletal representations (a skeleton and the corresponding radius function) for solid 2-dimensional semi-analytic sets that can be either rigid or undergoing topological deformations. Our approach relies on computing constructive representations of shapes with R-functions that operate on real-valued half-spaces as logic operations. We use our approximate distance functions to define a new type of skeleton, i.e, the C-skeleton, which is piecewise linear for polygonal domains, generalizes naturally to planar and spatial domains with curved boundaries, and has attractive properties. We also show that the exact distance functions allow us to compute the medial axis of any closed, bounded and regular planar domain. Importantly, our approach can generate the medial axis, the straight skeleton, and the C-skeleton of possibly deformable shapes within the same formulation, extends naturally to 3D, and can be used in a variety of applications such as skeleton-based shape editing and adaptive motion planning.
منابع مشابه
Nonlinear inelastic dynamic analysis of space steel frames with semi-rigid connections in urban buildings
Applied studies addressing semi-rigid connections have been limited. Scant information exists in regulations except little brief information. Therefore, this research analyzes the behavior of three-dimensional steel frames and semi-rigid connections based on beam-column method and non-linear dynamic analysis. Stability functions and geometric stiffness matrix were used to study the non-linear g...
متن کاملDeformable Density Matching for 3D Non-rigid Registration of Shapes
There exists a large body of literature on shape matching and registration in medical image analysis. However, most of the previous work is focused on matching particular sets of features--point-sets, lines, curves and surfaces. In this work, we forsake specific geometric shape representations and instead seek probabilistic representations--specifically Gaussian mixture models--of shapes. We ev...
متن کاملGlobally analytic $p$-adic representations of the pro--$p$--Iwahori subgroup of $GL(2)$ and base change, I : Iwasawa algebras and a base change map
This paper extends to the pro-$p$ Iwahori subgroup of $GL(2)$ over an unramified finite extension of $mathbb{Q}_p$ the presentation of the Iwasawa algebra obtained earlier by the author for the congruence subgroup of level one of $SL(2, mathbb{Z}_p)$. It then describes a natural base change map between the Iwasawa algebras or more correctly, as it turns out, between the global distribut...
متن کاملThe utility of shape attributes in deciphering movements of non-rigid objects.
Most moving objects in the world are non-rigid, changing shape as they move. To disentangle shape changes from movements, computational models either fit shapes to combinations of basis shapes or motion trajectories to combinations of oscillations but are biologically unfeasible in their input requirements. Recent neural models parse shapes into stored examples, which are unlikely to exist for ...
متن کاملMatching 3D Shapes Using 2D Conformal Representations
Matching 3D shapes is a fundamental problem in Medical Imaging with many applications including, but not limited to, shape deformation analysis, tracking etc. Matching 3D shapes poses a computationally challenging task. The problem is especially hard when the transformation sought is diffeomorphic and non-rigid between the shapes being matched. In this paper, we propose a novel and computationa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer-Aided Design
دوره 41 شماره
صفحات -
تاریخ انتشار 2009